Learning Cost-Effective and Interpretable Treatment Regimes

نویسندگان

  • Himabindu Lakkaraju
  • Cynthia Rudin
چکیده

Decision makers, such as doctors and judges, make crucial decisions such as recommending treatments to patients, and granting bail to defendants on a daily basis. Such decisions typically involve weighing the potential benefits of taking an action against the costs involved. In this work, we aim to automate this task of learning cost-effective, interpretable and actionable treatment regimes. We formulate this as a problem of learning a decision list – a sequence of if-then-else rules – that maps characteristics of subjects (eg., diagnostic test results of patients) to treatments. This yields an end-to-end individualized policy for tests and treatments. We propose a novel objective to construct a decision list which maximizes outcomes for the population, and minimizes overall costs. Since we do not observe the outcomes corresponding to counterfactual scenarios, we use techniques from causal inference literature to infer them. We model the problem of learning the decision list as a Markov Decision Process (MDP) and employ a variant of the Upper Confidence Bound for Trees (UCT) strategy which leverages customized checks for pruning the search space effectively. Experimental results on real world observational data capturing judicial bail decisions and treatment recommendations for asthma patients demonstrate the effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Cost-Effective and Interpretable Regimes for Treatment Recommendation

Decision makers, such as doctors, make crucial decisions such as recommending treatments to patients on a daily basis. Such decisions typically involve careful assessment of the subject’s condition, analyzing the costs associated with the possible actions, and the nature of the consequent outcomes. Further, there might be costs associated with the assessment of the subject’s condition itself (e...

متن کامل

Learning Cost-Effective Treatment Regimes using Markov Decision Processes

Decision makers, such as doctors and judges, make crucial decisions such as recommending treatments to patients, and granting bails to defendants on a daily basis. Such decisions typically involve weighting the potential benefits of taking an action against the costs involved. In this work, we aim to automate this task of learning cost-effective, interpretable and actionable treatment regimes. ...

متن کامل

Using decision lists to construct interpretable and parsimonious treatment regimes.

A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of...

متن کامل

A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING

In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.

متن کامل

Learning Cost-Effective and Interpretable Treatment Regimes for Judicial Bail Decisions

Decision makers, such as judges, make crucial choices regarding judicial bail decisions on a daily basis. Such decisions typically involve careful assessment of the subject’s (or defendant’s) condition, analyzing the costs associated with the possible actions, and the nature of the consequent outcomes. Further, there might be costs associated with the assessment of the subject’s condition itsel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017